

USE OF DEVICES AT ST PETER'S SCHOOL AND PROJECTS INVOLVED

	Digital competencies	Computational thinking		Mechatronic devices	AI	Design	Devices needed
N1- F3							None
F3-F4		Beebots					Beebots provided by the school
F4-F5		Mtiny					Mtiny provided by the school
¥1		Scratch Jr	Scratch Jr				Ipad provided by the school
¥2	Ted Talk		MiniCoders			✓ Tinkercad	Laptop
Y3		STEAM olympiad Microbits	STEAM olympiad Microbits	₩ LegoWeDo			Laptop Microbits provided by the school LegoWeDo provided by the school
¥4		Microbits	Cratch	Microbits		Thinkercat Design Sprites Design circuits	Laptop Microbits provided by the school
¥5	Exhibition		MiniCoders Arduino	Rover creation	Mission to Mars simulations	₩ Tinkercad	Laptop Arduino board

	Digital competencies	Computational thinking		Mechatronic devices	AI	Design	Devices needed
Y6	Slides-google classroom				Interdisciplinar y Unit	✓ Tinkercad	Laptop
Υ7	Smart Cities	Minecraft	✓ Minecraft	Multidisciplinary project			Laptop
Y8	technical project research		technical project research	technical project		technical project research	Laptop Materials depending upon the choices of projects
¥9	Ted Talk	∨ Cansat	∨ Cansat	Cansat		Cansat	Laptop Arduino Board Raspberry Pi Board
¥10	HAB presentation	MAB	MAB	MAB		HAB	Laptop Arduino Board Raspberry Pi Board
Y11	Philosophy olympiad				VFC	YPC	Laptop Photonics lab materials provided by the school
Y12	Research skills				Use of AI as a source of info		Laptop

PROJECT DESCRIPTION PER YEAR

Year	Project Description	Ipad	Computer	Other devices
F3-F4	 Beebots: Introduction to sequencing language and problem solving. <u>https://wowscience.co.uk/resource/bee-bot/</u> 			
F4-F5	1. Mtiny Introduction to programming thinking skills and the use of mathematics to solve computation problems <u>https://cdnlab.makeblock.com/mTiny%20Discover%20Getting%20Started%20Activities.p</u> <u>df</u>			
Y1	 Scratch Jr Introduction to algorithms and the idea of variables. Programming sequences using trial and error. Create stories https://www.scratchjr.org/ 			
	 Minicoders pilot project Pilot project, in collaboration with Minicoders. Students solve programming challenges on Roblox in a gamified environmentI to increase Coding abilities. Magic School setting <u>https://www.minicoders.com/?fbclid=IwAR1IJxa0YezIO4NmIv2xPix6HrQqMF9Y0GWuE_5</u> 			
Y2	2. TED Talks The TED-Ed Student Talks program provides a free curriculum that supports students in identifying, developing and sharing their ideas in the form of short, TED-style talks. This curriculum is used in over 130 countries by educators in classrooms, schools, extra-curricular settings, and educational organizations. https://ed.ted.com/student_talks			
	 3. Tinkercad Introduction to a 3D digital design program. Work on product design and prototypes by using 3D printers. Introduction to circuits and code blocks as well https://www.tinkercad.com/ 			

Y3	1. STEAM Olympiad Students compete with their peers and students in the same class from different countries and take the time to prepare for the category in which they will participate. Students learn about various educational curricula and discover new information in addition to traditional question models. Students will gain an understanding of how Science, Technology, Engineering, and Mathematics are interconnected with one another under the name STEM and it will change their perspective on lessons. Particularly St Peter's students participates in the coding competition <u>https://stemolympiad.org/</u>		
	 Lego WEDO Advanced usage of WEDO to create a complete design project using programming and building a device using sensors and testing for improvement. Introduction to the idea of forces and pull Microbits Use Microbits to create an environmental friendly device to solve an existing problem 		
	https://microbit.org/projects/make-it-code-it/light-up-fishing-nets/		
Υ4	 STEAM Olympiad Students compete with their peers and students in the same class from different countries and take the time to prepare for the category in which they will participate. Students learn about various educational curricula and discover new information in addition to traditional question models. Students will gain an understanding of how Science, Technology, Engineering, and Mathematics are interconnected with one another under the name STEM and it will change their perspective on lessons. Particularly St Peter's students participates in the coding competition https://stemolympiad.org/ Scratch programming: 		
	Advanced use of blocks programming to create projects. Use of algorithms, variables, loops and routines.Debugging and optimizing the programs https://sip.scratch.mit.edu/		

	Microbits Create a safety device for a safe-vest that detects water and lights on https://microbit.org/projects/make-it-code-it/light-up-fishing-nets/ Tinkercad Use the circuit's setting and design a circuit before building it in real live. Use of light sensors and code blocks as well https://www.tinkercad.com/		
	1. Minicoders pilot project		
Y5	Pilot project, in collaboration with Minicoders. Students solve programming challenges on Roblox in a gamified environment to increase coding abilitiesMission to Mars setting https://www.minicoders.com/?fbclid=IwAR1IJxa0YezIO4NmIv2xPix6HrQqMF9Y0GWuE_5 qcd_SWCMMS25DB97Pv-w		
	2. Mission to Mars: Design a Mars base and a rover to navigate Mars surface. Introduction to the use of arduino, sensors and actuators, integrating coding and electronics <u>https://www.arduino.cc/</u>	V	
Y6	1. Al Interdisciplinary Unit Artificial intelligence (AI) is changing the world as we know it. AI implies a revolution in science, culture, the arts, communication, sports, or geopolitics. AI is conditioning the life systems of human beings and probably is changing their own nature as well as access to knowledge of the world. Further info on our <u>blog</u> . Unit <u>Plan</u> .		
	 MInecraft and Smart Cities Co-design workshops focused on storytelling and the construction of environments in the Minecraft video game. Barcelona as a smart city and creating sustainable solutions for the school's neighbourhood. Further info <u>here</u> 	V	
Υ7	2. Multidisciplinary project Involving the study of rules of 3d design, 3d printing, arduino. Use of technology and thinking skills, Scrum cycle, engineering process. Study of design viability study about financial resources and functionality		

Y8	 Scientific and technical innovation devices Introduction to design research and the mechatronics field. Creation of a technical solution to a situation. Efficiency, purpose and impact on the environment are important. Introduction to python programming 		
Y9	1. CANSAT project The European CanSat Competition is an ESA Education project that promotes STEM skills amongst young European students through project-based learning. A CanSat is a simulation of a real satellite, integrated within the volume and shape of a soft drink can. The team's challenge is to fit all the major subsystems of a satellite inside this minimal volume, launched by a small rocket up to an altitude of 1 km. Further info here.		Raspberry Pi Arduino
Y10	1. HAB Hot Altitude Balloon project. Students will work to find a solution that travels to the stratosphere and collects crucial data for the exploration of the conditions, climate, and radiation of earth. Students will develop a HAB (High Altitude Balloon able to reach at least 27km from earth considering just the needed resources and the space / weight variables.		Raspberry Pi Arduino
	1. Young Photonics Congress The students will participate in the Young Photonics Congress 2023 with a scientific poster presenting their research in the field of photonics and its applications. The topics selected by our students are changes in the angle of refraction due to changes in substance concentration, and the study of light absorción using a spectrophotometer. https://outreach.icfo.eu/events/ypc23/		Spectrophotometer Cellphones
Y11	 3. Philosophy Olympiad The aim of the Philosophy Olympiad is to promote the development of skills inherent to philosophy: Questioning and using argumentation to overcome prejudices and consolidate one's own thinking. Identify the ethical aspects of each situation and give appropriate and preferably innovative responses. Ability to conceptualize, argue, problematize and critically analyze. <u>https://redfilosofia.es/olimpiada/</u> 	V	
Y12			